Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 15: 1273825, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37953886

RESUMO

Background: Cognitive impairment is an irreversible, aging-associated condition that robs people of their independence. The purpose of this study was to investigate possible causes of this condition and propose preventive options. Methods: We assessed cognitive status in long-living adults aged 90+ (n = 2,559) and performed a genome wide association study using two sets of variables: Mini-Mental State Examination scores as a continuous variable (linear regression) and cognitive status as a binary variable (> 24, no cognitive impairment; <10, impairment) (logistic regression). Results: Both variations yielded the same polymorphisms, including a well-known marker of dementia, rs429358in the APOE gene. Molecular dynamics simulations showed that this polymorphism leads to changes in the structure of alpha helices and the mobility of the lipid-binding domain in the APOE protein. Conclusion: These changes, along with higher LDL and total cholesterol levels, could be the mechanism underlying the development of cognitive impairment in older adults. However, this polymorphism is not the only determining factor in cognitive impairment. The polygenic risk score model included 45 polymorphisms (ROC AUC 69%), further confirming the multifactorial nature of this condition. Our findings, particularly the results of PRS modeling, could contribute to the development of early detection strategies for predisposition to cognitive impairment in older adults.

2.
Heliyon ; 9(6): e16917, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37287602

RESUMO

The emergence of mutations in the coronavirus genome provides opportunities for occurrence new strains with higher transmissibility, severity and duration of the disease poses. In 2020, a new variant of the coronavirus SARS-COV-2 - Delta was identified in India. This genetic variant has spread rapidly and became dominant in many countries, including Russia. In November 2021, a new outbreak of COVID-19 occurred in Africa driven by a variant SARS-COV-2 named later Omicron. Both variants had increased transmissibility compared to previously encountered variants and quickly, replacing its around the world. To promptly monitor the epidemiological situation in the country, to assess the spread of dominant genetic variants of the virus and to take appropriate measures, we have developed an RT‒PCR reagent kit for the identification of Delta and Omicron by detecting a corresponding combination of major mutations. The minimum set of mutations was chosen which allows to differentiate Delta and Omicron variants, in order to increase the analysis productivity and reduce costs. Primers and LNA-modified probes were selected to detect mutations in the S gene, typical for the Delta and Omicron. Similar approach can be implemented for the rapid development of assays for differentiating important SARS-COV-2 variants or for other viruses genotyping for epidemiological surveillance or for diagnostic use in order to assist in making clinical decisions. It was demonstrated that the results of VOC Delta and Omicron detection and their typical mutations were concordant with genotyping based on WGS results for all 847 samples of SARS-CoV-2 RNA. The kit has high analytical sensitivity (1х103 copies/mL of SARS-CoV-2 RNA) for each of the detected genetic variants and possesses 100% analytic specificity for microorganism panel testing. The diagnostic sensitivity (95% confidence interval) obtained during pivotal trials was 91.1-100% for Omicron and 91.3-100% for Delta, while the diagnostic specificity with a 95% confidence interval was 92.2-100%. The use of a set of reagents in combination with sequencing of SARS-CoV-2 RNA as part of epidemiological monitoring made it possible to quickly track the dynamics of changes in Delta and Omicron prevalence in the Moscow region in the period from December 2021 to July 2022.

3.
Acta Naturae ; 15(1): 31-41, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153512

RESUMO

Bronchial asthma (BA) is a disease that still lacks an exhaustive treatment protocol. In this regard, the global medical community pays special attention to the genetic prerequisites for the occurrence of this disease. Therefore, the search for the genetic polymorphisms underlying bronchial asthma has expanded considerably. As the present study progressed, a significant amount of scientific medical literature was analyzed and 167 genes reported to be associated with the development of bronchial asthma were identified. A group of participants (n = 7,303) who had voluntarily provided their biomaterial (venous blood) to be used in the research conducted by the Federal Medical Biological Agency of Russia was formed to subsequently perform a bioinformatic verification of known associations and search for new ones. This group of participants was divided into four cohorts, including two sex-distinct cohorts of individuals with a history of asthma and two sex-distinct cohorts of apparently healthy individuals. A search for polymorphisms was made in each cohort among the selected genes, and genetic variants were identified whose difference in occurrence in the different cohorts was statistically significant (significance level less than 0.0001). The study revealed 11 polymorphisms that affect the development of asthma: four genetic variants (rs869106717, rs1461555098, rs189649077, and rs1199362453), which are more common in men with bronchial asthma compared to apparently healthy men; five genetic variants (rs1923038536, rs181066119, rs143247175, rs140597386, and rs762042586), which are more common in women with bronchial asthma compared to apparently healthy women; and two genetic variants (rs1219244986 and rs2291651) that are rare in women with a history of asthma.

4.
Biomed Khim ; 66(6): 494-501, 2020 Nov.
Artigo em Russo | MEDLINE | ID: mdl-33372908

RESUMO

We found that changes in the concentrations of tryptophan metabolites in the blood serum and in the intestinal contents are one of the mechanisms for the formation of metabolic coupling in the system "macroorganism-intestinal microbiota", which undergoes significant changes in the development of obesity. Although blood kynurenine remained basically unchanged in obese children we found an increase in some of its serum metabolites: anthranilic, kynurenic and xanthurenic acids. It is noteworthy that in the analysis of fecal matter in obese children, revealed a 2-fold increase in the level of kynurenine while the concentration of kynurenine pathway metabolites corresponded to the level of the group of healthy children. This may indicate the metabolic activation of the microbiota associated with the intestinal mucosa. This is also supported by the absence of statistically significant differences in the concentration of indole in healthy children and in obese children in fecal analyses, and a significant increase in the concentration of indole-3-lactate and indole-3-acetate in the blood serum of obese children.


Assuntos
Obesidade Pediátrica , Criança , Humanos , Cinurenina , Extratos Vegetais , Triptofano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...